44,745 research outputs found

    Plasmons and near-field amplification in double-layer graphene

    Full text link
    We study the optical properties of double-layer graphene for linearly polarized evanescent modes and discuss the in-phase and out-of-phase plasmon modes for both, longitudinal and transverse polarization. We find a energy for which reflection is zero, leading to exponentially amplified transmitted modes similar to what happens in left-handed materials. For layers with equal densities n=1012n=10^{12}cm−2^{-2}, we find a typical layer separation of d≈500μd\approx500\mum to detect this amplification for transverse polarization which may serve as an indirect observation of transverse plasmons. When the two graphene layers lie on different chemical potentials, the exponential amplification either follows the in-phase or out-of-phase plasmon mode depending on the order of the low- and high-density layer. This opens up the possibility of a tunable near-field amplifier or switch.Comment: 9 pages, 8 figure

    Plasmonics in topological insulators: Spin-charge separation, the influence of the inversion layer, and phonon-plasmon coupling

    Full text link
    We demonstrate via three examples that topological insulators (TI) offer a new platform for plasmonics. First, we show that the collective excitations of a thin slab of a TI display spin-charge separation. This gives rise to purely charge-like optical and purely spin-like acoustic plasmons, respectively. Second, we argue that the depletion layer mixes Dirac and Schr\"odinger electrons which can lead to novel features such as high modulation depths and interband plasmons. The analysis is based on an extension of the usual formula for optical plasmons that depends on the slab width and on the dielectric constant of the TI. Third, we discuss the coupling of the TI surface phonons to the plasmons and find strong hybridisation especially for samples with large slab widths.Comment: 37 pages, 7 figure

    Spin-charge separation of plasmonic excitations in thin topological insulators

    Get PDF
    We discuss plasmonic excitations in a thin slab of a topological insulators. In the limit of no hybridization of the surface states and same electronic density of the two layers, the electrostatic coupling between the top and bottom layers leads to optical and acoustic plasmons which are purely charge and spin collective oscillations. We then argue that a recent experiment on the plasmonic excitations of Bi2Se3 [Di Pietro et al, Nat. Nanotechnol. 8, 556 (2013)] must be explained by including the charge response of the two-dimensional electron gas of the depletion layer underneath the two surfaces. We also present an analytic formula to fit their data.Comment: 7 pages, 5 figure

    Exploring spin-orbital models with dipolar fermions in zig-zag optical lattices

    Full text link
    Ultra-cold dipolar spinor fermions in zig-zag type optical lattices can mimic spin-orbital models relevant in solid-state systems, as transition-metal oxides with partially filled d-levels, with the interesting advantage of reviving the quantum nature of orbital fluctuations. We discuss two different physical systems in which these models may be simulated, showing that the interplay between lattice geometry and spin-orbital quantum dynamics produces a wealth of novel quantum phases.Comment: 4 pages + supplementary materia

    Exclusive photoproduction of quarkonium in proton-nucleus collisions at energies available at the CERN Large Hadron Collider

    Get PDF
    In this work we investigate the coherent photoproduction of psi(1S), psi(2S) and Upsilon (1S) states in the proton-nucleus collisions in the LHC energies. Predictions for the rapidity distributions are presented using the color dipole formalism and including saturation effects that are expected to be relevant at high energies. Calculations are done at the energy 5.02 TeV and also for the next LHC run at 8.8 TeV in proton-lead mode. Discussion is performed on the main theoretical uncertainties associated to the calculations.Comment: 05 pages, 5 figures. Version to be published in Phys. Rev.

    Light vector meson photoproduction in hadron-hadron and nucleus-nucleus collisions at the energies available at the CERN Large Hadron Collider

    Get PDF
    In this work we analyse the theoretical uncertainties on the predictions for the photoproduction of light vector mesons in coherent pp, pA and AA collisions at the LHC energies using the color dipole approach. In particular, we present our predictions for the rapidity distribution for rh0 and phi photoproduction and perform an analysis on the uncertainties associated to the choice of vector meson wavefunctionand the phenomenological models for the dipole cross section. Comparison is done with the recent ALICE analysis on coherent production of rho at 2.76 TeV in PbPb collisions.Comment: 07 pages, 6 figures. Version to be published in Phys. Rev.

    Diffractive dissociation in proton-nucleus collisions at collider energies

    Full text link
    The cross section for the nuclear diffractive dissociation in proton-lead collisions at the LHC is estimated. Based on the current theoretical uncertainties for the single (target) diffactive cross section in hadron-hadron reactions one obtains sigma_SD(5.02 TeV) = 19.67 \pm 5.41 mb and sigma_SD(8.8 TeV) = 18.76 \pm 5.77 mb, respectively. The invariant mass M_X for the reaction pPb -> pX is also analyzed. Discussion is performed on the main theoretical uncertainties associated to the calculations.Comment: 04 pages, 2 figures. Final version to be published in European Physical Journal A - "Hadrons and Nuclei
    • …
    corecore